
Chapters 5 & 6

1/31/2012 CSC4341 1

Types and Relations

Introduction

� Relational Model
– Data structure
– Data Manipulation

1/31/2012 CSC4341 2

– Data Manipulation
– Data Integrity

� Terminologies

1/31/2012 CSC4341 3

� � � � � ��� �	
 �� � � � ��� � � �

1/31/2012 CSC4341 4

Domains

� Definition
– Data type (system defined or user defined)
– All possible values of the type

� Operators

1/31/2012 CSC4341 5

� Operators
– A given type is associated with valid operators that

can legally be applied to values of that type.
• “+”, “*” for integer arithmetic
• “||” for strings concatenation

� Type/Physical Representation
– Type is model issue
– Physical representation is implementation issue

Domains

� Values are typed
– Nonscalar: Has user-visible components
– Scalar: Has no user-visible components

1/31/2012 CSC4341 6

– Scalar: Has no user-visible components
– Relation types are nonscalar

• Components are columns

– Scalar: encapsulated or atomic

Domains

� Type Definition
– Tutorial D – a Pascal like language
– TYPE S# POSSREP (CHAR)

1/31/2012 CSC4341 7

– TYPE S# POSSREP (CHAR)
– DROP TYPE <type name>

� Possible Representation

Possible Representation
� � � � � � �� � � � � �� � � � � � � �� �� ��
 �� ��
 ��� � �

� � � � � � �� �� � � � �� � � � � � �

1/31/2012 CSC4341 8

� �� � ��
 � � �� �� � �
 �� � � � �� � ���
 � �� � � � �� � �� �

1/31/2012 CSC4341 9

Operator Definition

1/31/2012 CSC4341 10

Type Conversion
� �
 � �� �

� ! � � �� " �� # � � � � � �$� � %� &

' �(� � � � �� " �) �*� +,
- � .

1/31/2012 CSC4341 11

- � .
' �(� � � � �� " �) �� " $*� +,&

	
 / � 0�
 1�� �� �
 / � � ��
 �� � � � � � � ��� � ��� �� �� �) 2 �� # � � � 	# 3

Relational Values

� Definition
– Given a collection of n types domains Ti

r is a relation on those types if it consists of two
parts, headings and body

1/31/2012 CSC4341 12

parts, headings and body
a). The heading is a set of attributes of the form

Ai:Ti
b). The body is a set of m tuples t

– Table is a reasonable picture of a relation
– Relation is what the definition says while table is a

concrete picture of such abstract object.

Properties of Relations

� There are no duplicate tuples
– A mathematical set and sets do not include

duplicate elements
– Relations are different from tables

1/31/2012 CSC4341 13

– Relations are different from tables

� Tuples are unordered, top to bottom
– No such things as “7th tuple, the next tuple”

� Attributes are unordered, left to right
� Each tuple contains exactly on value for each

attribute
– First normal form or normalized

Relation Variables

� Base Relvar Definition
– VAR <relvar name> BASE <relation type>

<candidate key list>

1/31/2012 CSC4341 14

[<foreign key list>];
<relation type>

takes form RELATION {<attribute commalist>}
<attribute>

takes form <attribute name> <type name>

Relation Variables

� Examples:
– VAR <relvar name> BASE <relation type>

<candidate key list>
[<foreign key list>];

<relation type> ::= RELATION {<attribute commalist>}

1/31/2012 CSC4341 15

<relation type> ::= RELATION {<attribute commalist>}
<attribute> ::= <attribute name> <type name>

VAR SP BASE
RELATION { S# S#, P# P#, QTY# QTY#}
PRIMARY KEY {S#, P#}
FOREIGN KEY {S#} REFERENCES S
FOREIGN KEY {P#} REFERENCES P

Updating Relvars

� Syntax:
<relvar name> := <relational expression>;

� Examples:

1/31/2012 CSC4341 16

VAR R BASE RELATION
{ S# S#, SNAME NAME, STATUS INTEGER,
CITY CHAR}

R := S;
R := S WHERE CITY = ‘London’ ;
R := S MINUS (S WHERE CITY = ‘Paris’);

Updating Relvars

� Examples:
S := S WHERE CITY = ‘London’ ;

Delete all suppliers not in London.
S := S MINUS (S WHERE CITY = ‘Paris’);

Delete all suppliers in Paris

1/31/2012 CSC4341 17

Delete all suppliers in Paris

INSERT INTO S
RELATION { TUPLE {S# S#(‘S6’), SNAME

NAME(‘Smith’),
STATUS 50, CITY ‘Rome’} };

Updating Relvars (Cont’d)

Equivalent to
S := S UNION
RELATION { TUPLE {S# S#(‘S6’), SNAME

NAME(‘Smith’),NAME(‘Smith’),
STATUS 50, CITY ‘Rome’} };

1/31/2012 CSC4341 18

